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Abstract. We consider ALOHA and slotted ALOHA protocols as medium access rules for

a multi-channel message delivery system. Users decide randomly and independently with a

minimal amount of knowledge about the system at random times to make a message emission

attempt. We consider the two cases that the system has a fixed number of independent available

channels, and that interference constraints make the delivery of too many messages at a time

impossible.

We derive probabilistic formulas for the most important quantities like the number of suc-

cessfully delivered messages and the number of emission attempts, and we derive large-deviation

principles for these quantities in the limit of many participants and many emission attempts.

We analyse the rate functions and their minimizers and derive laws of large numbers for the

throughput. We optimize it over the probability parameter. Furthermore, we are interested in

questions like “if the number of successfully delivered messages is significantly lower than the

expectation, was the reason that too many or too few sending attempts were made?”. Our main

tools are basic tools from probability and the theory of (the probabilities of) large deviations.
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1. Introduction and main results

1.1. Introduction. Protocols for medium access control (MAC) are fundamental and ubiq-
uitous in any telecommunication system. Here we are particularly interested in multi-channel
systems, where a fixed number of channels is available. In order to keep the complexity of the
algorithm of the channel choices by the transmitters low, we make a well-known probabilistic
ansatz and assume that each transmitter chooses randomly and independently a channel for
each transmission. This makes the system get along with a minimum of infrastructure, i.e,
with a minimum knowledge about the occupancy of the channels. In other words, we consider
an ALOHA-based multi-channel protocol, see [RS90]. More specifically, we concentrate in this
paper on slotted ALOHA, where message transmissions are possible only in specific micro time
slots.
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It is our purpose to study random events that comprise the transmission of many messages
from many transmitters in a large number of (very short) time-slots, forming a fixed time
interval, in the limit of many such slots. In each of the slots, each transmitter chooses with a
certain probability, independently over all transmitters and over all slots, whether to make a
transmission attempt in that slot or not. This probability must be very small, i.e., on the scale
of the inverse of the number of transmitters. This leads to a huge number of random decisions
that have to be drawn in each time slot, with a tiny probability each, which leads to a huge
amount of data with high imprecision.

In this paper, we give a probabilistic analysis of the main quantities, like numbers of attempts
and of successes, per micro time slot in the limit of many such time slots, coupled with many
message emission attempts. In particular, we comprehensively characterize the main quality
parameter, the throughput. We are going to find neat descriptions of the entire (joint) distri-
butions of these quantities and of their limits. In particular, we introduce techniques from the
probabilistic theory of (the probabilities of) large deviations. Using this theory, we analyse
events that have a very low probability in this limit, like the event that the number of successes
is significantly lower than its expectation. Furthermore, we give an explicit assessment of the
most likely reason for this. In this way, we go far beyond calculating (limiting) expectations, but
we handle the numbers of message attempts and transmission successes per slot as stochastic
processes with a rich structure.

In our system, we have a fixed upper bound κ for the number of messages that can be
successfully delivered in a given micro time slot. Our main system parameter is the probability
parameter p, the medium access probability (MAP), with which each of the messages tries
randomly to gain access to the system. If p is too large, then it is likely that the system exceeds
the upper bound κ, which results into failures of many message transmissions. On the other
hand, if p is too small, then a part of the possible capacity is not exhausted, and the system
underachieves. One of our goals is to quantify an optimal choice of p. The main quantity for
this criterion is the throughput, the number of successfully transmitted messages per time unit.
But we analyse also other quantities like the number of message attempts.

In the multi-channel (MC) models that we consider in this paper, we assume a total interfer-
ence isolation between the channels, i.e., we neglect possible interferences between them. Here
each channel in a given micro time slot is able to successfully transmit one message, if no more
than one emission attempt is made through this channel. The higher the number of emission
attempts is, the higher is the number of sucesses (but also the number of unsuccessful messages,
which we could also analyse with our ansatz, but abstained from); hence an optimization over
the probability parameter is only of limited interest, unless there is a substantial price that is
paid per unsuccessful transmission.

Closely related to multi-channel systems are systems with entirely unlimited interference
between all of them. Here the success of the transmission of the messages is regulated by
means of the signal-to-interference ratio (SIR). In a simplified setting, the transmission of
message i in a given time slot is successful if and only if

1∑
j∈I\{i} 1

≥ τ,

where τ ∈ (0,∞) is a technical constant, and I is the index set of messages that attempt to
transmit in this slot (which depends on various quantities, like the number of message emission
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attempts in that slot, which may be random). Since we are working in a spaceless model,
there is no distance and therefore no path-loss function involved, and we give the same signal
strength power 1 to each transmission attempt. Putting κ = 1 + b 1

τ
c ∈ N, we see that any

transmission attempt in the slot is successful if and only if no more than κ attempts are made
in the slot; otherwise interference makes all these attempts unsuccessful. This is the second
of the two model functionalities that we are going to study; we call it an interference-based
(IB) model. Mathematically, it shows great similarities to multi-channel models, but the most
important difference is that a high number of emission attempts leads to many unsuccessful
attempts and is therefore working against a high throughput; hence an optimization over the
probability parameter is of high interest and not an easy task.

While the derivation of the expected throughput in the multi-channel ALOHA model and its
optimization over p is easy (with the well-known result that the maximal throughput is equal to
κ/e with κ the number of channels), for the interference-based model, we can offer an explicit
formula for the expectation, but only approximate characterisations of the maximization over
p, which get sharp in the limit as κ→∞.

We would like to point out that, from a mathematical-practical point of view, it might have
advantages to let each transmitter decide, for the entire time interval under consideration,
whether or not an attempt is made during that interval, and then to randomly and uniformly
distribute the attempts over the time slots of this interval. We call the first mode of attempt
decisions local and the latter global. We will be studying both in this paper, since we believe
that both have their right and their advantages. On the level of expectations, there will be
no difference noticeable between the main quantities of interest, but in the large-deviation
behavior.

Summarizing, the main new contributions of the present paper are the following.

(a) describing the relevant quantities in terms of their entire joint distribution (rather than
only expectations),

(b) describing limiting events of large deviations asymptotically in terms of explicit rate
functions,

(c) comparing local and global random assignments of transmission slots,
(d) optimizing the throughput over the MAP for the interference-based model,
(e) analysis of large deviation probabilities of conditional events (e.g., of a low number of

successes).

The remainder of this paper is organized as follows. We introduce our models in Section 1.2
and the most important quantities and questions in Section 1.3. Our results are presented
and commented in Section 1.4, and some comments on the literature are made in Section 1.5.
Section 2 brings all the proofs of the large-deviation principles, and Section 3 the proofs of the
other results.

1.2. Description of the models. Let us introduce the models that we are going to analyse.
We consider a reference time interval, which we pick as [0, 1]. We have a large parameter
N ∈ N, which models a large number of network participants and a large number of time slots.
The reference time interval is divided in to N slots [ i−1

N
, i
N

) for i ∈ [N ] = {1, . . . , N}; every
message delivery starts at the beginning of one of these slots and terminates before its elapsure.
With a fixed parameter b ∈ (0,∞), we assume that bN participants (we waive the integer-part
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brackets) are in the system, i.e., at any time bN devices would like to emit one message each.
Access to the medium is under some random rule, for which we consider two variants, a rule
that is local in time and one that is global in time; both have a parameter p ∈ (0,∞).

Access rules:

(L) Under the local rule each of the bN participants chooses at any time slot randomly with
probability p

N
to emit a message during this slot, independently over all bN participants

and all N time slots.
(G) Under the global rule each of the bN participants chooses randomly with probability p

whether to emit a message during some of the N time slots, and then all those who
choose that option are randomly and uniformly distributed over the N time slots.

Under Rule (G), any participant has only at most one chance during [0, 1], while under Rule
(L), every message has an unbounded number of trials and can be successful several times
uring [0, 1]. Hence, under (G), p needs to be in (0, 1], while under (L), it can be any positive
number, assuming that N is large (and we assume this). We assume that each participant has
an unbounded number of packages to be sent, i.e., it makes successively an unbounded number
of emission attempts. Rule (G) has a two-step random strategy, as first each message randomly
decides whether to attempt a transmission, and then picks randomly a microscopic time slot.
Here the number of random variables that need to be sampled is much smaller than under Rule
(L), and the probability parameter is of finite order in N , in contrast to Rule (L). We therefore
see substantial practical advantages in Rule (G) over Rule (L).

Now we describe the criteria for successful delivery of the messages that are choosen to be
emitted under either Rule (L) or (G). We consider two scenarios, the multi-channel scenario
and the interference-based scenario; both come with a parameter κ ∈ N:

Success rules:

(MC) In the multi-channel scenario, the are κ channels available, and in each slot each of the
emission attempts choose randomly and uniformly one of the κ channels, independent
over all the other participants and time slots. A transmission attempt is successful in
this slot if no other participant chooses the channel that it picked. All other attempts
are unsuccessful.

(IB) In the interference-based scenario, in any given time slot, all transmission attempts are
successful if their number does not exceed κ; otherwise all attempts in that slot are
unsuccessful.

In the case of a successful attempt of transmission of a message, we say that the participant
has gained access to the medium. As we explained in Section 1.1, Scenario (MC) describes
slotted ALOHA with κ channels and total absence of infrastructure, while Scenario (IB) de-
scribes the influence of interference constraints. Note that Model (B) in [HLS12] is contained
in Scenario (MC).

We are going to couple each of the two scenarios (MC) and (IB) with each of the two Rules
(L) and (G) and obtain four different protocols. Scenario (MC), coupled with Rule (L), is equal
to Model (B) in [HLS12].
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1.3. Quantities and questions of interest. There are three parameters in our simple models:

• p ∈ (0,∞) the emission attempt probability parameter,
• b ∈ (0,∞) the rate of messages that would like to be transmittted during [0, 1],
• κ ∈ N the threshold for the success criterion.

We consider κ (given by technical conditions) and b (given by the appearance of participants)
as given quantities that cannot be controled. However, the parameter p can be picked by the
system operator and can be adapted to b and κ; it is decisive for the success of the system.
Part of our investigations will be on an optimal choice of p given κ and b.

The quantities that we are interested in are the following.

• AN = the number of message sending attempts,
• SN = number of successfully sent messages,
• (only for Secnario (IB)) RN = number of successful slots, that is, slots in which all

messages are successfully transmitted.

These three quantities are defined on probability spaces whose probability measures are
denoted by P(N)

D,E with D ∈ {L,G} and E ∈ {MC, IB}, respectively.

The most important quantity is the throughput, the number of succcessfully sent messages
per time unit, which is equal to SN/N in our model. But we find it also important to consider
the number of unsuccessful sending attempts, in order to be able to say something about the
frustration of the participants of the system.

In both scenarios, in order to maximize the number of successes, one would like to pick the
probability parameter p in such a way that the expected number of transmission attempts per
slot is close to κ, i.e., p ≈ κ/b. However, if the number of attempts fluctuates upwards, then
the success is damaged, in (IB) even maximally damaged; hence the optimal choice of p should
be a bit lower. Part of our analysis is devoted to finding the optimal value of this parameter.

1.4. Our results. In this section we describe and comment on our results: Section 1.4.1 on
large-deviations, Section 1.4.2 on laws of large numbers, Section 1.4.3 on the optimal choice of
the probability parameter p, and Section 1.4.4 on the question where the event of having few
successes most likely comes from.

We denote the Poisson distribution with parameter α ∈ (0,∞) on N0 by Poiα = (e−α α
k

k!
)k∈N0 ,

and the binomial distribution on {0, 1, . . . , N} with parameters N ∈ N and p ∈ (0, 1) by
BinN,p(k) =

(
N
k

)
pk(1− p)N−k. Furthermore, we denote the entropy of a probability measure µ

on some discrete set X with respect to another one, ν, by H(µ|ν) =
∑

k∈X µk log µk
νk

. Recall

that µ 7→ H(µ|ν) is non-negative, strictly convex and is zero only for µ = ν. By M1(X ) we
denote the set of probability measures on X .

1.4.1. Large-deviation principles. Our first main result is on the asymptotics as N →∞ of the
joint distribution of (SN , AN , RN), in the sense of a large-deviation principle. First we turn to
(IB).

Theorem 1.1 (LDP for 1
N

(AN , SN , RN) for Scenario (IB)). Fix the model parameters b, p >
0 and κ ∈ N, where we assume p ≤ 1 for D = G. Then for both D ∈ {L,G}, the tuple
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1
N

(AN , SN , RN) satisfies a large-deviation principle (LDP) under P(N)

D,IB with rate function given
by

IL,IB(a, s, r) = inf
{
H(µ|Poibp) : µ ∈M1(N0),

∑
k∈N0

f(k)µk = (a, s, r)
}

(1.1)

where f(k) = (k, k1l{k ≤ κ}, 1l{k ≤ κ}), while

IG,IB(a, s, r) = IL,IB(a, s, r) + (b− a) log
1− a

b

1− p
+ a− bp. (1.2)

The proof is in Section 2.1 for Rule (L) and in Section 2.2 for Rule (G). An alternate proof
under Rule (L) is described in Section 2.3; this leads to a very different formula for the rate
function.

The stated LDP says that for any open, respectively closed, set G,F ⊂ [0, b]× [0, b]× [0, 1] ,

lim sup
N→∞

1

N
logP(N)

D,IB

( 1

N

(
AN , SN , RN

)
∈ F

)
≤ −inf

F
ID,IB,

lim inf
N→∞

1

N
logP(N)

D,IB

( 1

N

(
AN , SN , RN

)
∈ G

)
≥ −inf

G
ID,IB.

This can be symbolically summarized by saying that for any (a, s, r)

P(N)

D,IB

(
1
N

(AN , SN , RN) ≈ (a, s, r)
)
≈ e−NID,IB(a,s,r), N →∞.

See [DZ10] for an account on the theory of (the probabilities of) large deviations.

Remark 1.2 (LDP for SN). A standard corollary of Theorem 1.1 is an LDP for the number SN
of successes, which follows directly from the contraction principle (which says that (ϕ(XN))N∈N
satisfies an LDP if (XN)N∈N does and ϕ is continuous, and it gives a formula for the rate
function). Indeed 1

N
SN satisfies an LDP under P(N)

D,IB with rate function for D=L

s 7→ inf
a,r
IL,IB(a, s, r) = inf

{
H(µ|Poibp) : µ ∈M1(N0),

∑
k∈[κ]

kµ(k) = s
}
.

This formula is further analysed as a by-product in the proof of Theorem 1.15. A conclusion is
that the probability to have less than N(sIB(p, κ) − ε) successes decays exponentially fast with
rate inf{H(µ|Poibp) : µ ∈ M1(N0),

∑
k∈[κ] kµ(k) ≤ sIB(p, κ) − ε}, which is a positive number.

Certainly, the analogous statement holds also for Rule (G). Furthermore, we can also apply the
contraction principle to obtain an LDP for RN or for the pair (AN , SN). ♦

Remark 1.3 (Higher precision). With more of technical work, we could also prove the follow-
ing, stronger assertion. Fix a, s ∈ [0, b] satisfying s ≤ a and fix r ∈ [0, 1]. Pick sequences
aN , sN , rN ∈ 1

N
N0 such that aN → a, sN → s and rN → r as N →∞. Then for D ∈ {G,L},

ID,IB(a, s, r) = − lim
N→∞

1

N
logP(N)

D,IB

(
AN = NaN , SN = NsN , RN = NrN

)
. (1.3)

♦

Remark 1.4 (Difference of the rate functions). In the proof in Section 2.2 it will turn out that,
under Rule (L), AN has the distribution of N independent BinbN,p/N -distributed random vari-
ables, while unter Rule (G), AN is BinbN,p-distributed. Given AN , the distribution of (SN , RN)
is the same under both rules. The last term on the right-hand side of (1.2) (i.e., the difference
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of the two rate functions) is equal to the difference of the two rate functions for 1
N
AN . These

two rate functions are

JL(a) = pb− a+ a log
a

pb
, (1.4)

JG(a) = a log
a

p
+ (b− a) log

b− a
1− p

− b log b, (1.5)

and the last term in (1.2) is equal to JG(a)− JL(a). Note that

J ′G(a) = log
a

b− a
+ log

1− p
p

, J ′′G(a) =
b

a(b− a)
,

and J ′L(a) = log a
bp

and J ′′L(a) = 1
bp

. Hence, J ′′L(bp) < J ′′G(bp) and therefore, for a in a neigh-

bourhood of the minimal site bp outside bp, we see that JL(a) < JG(a). This shows that under
Rule (G) the number of attempts has a smaller variance (even on the exponential scale) than
under Rule (L), which we consider as a structural advantage of (G) over (L). ♦

Remark 1.5 (Analysis of rate function). On the first view, the formula in (1.1) seems
to be rather involved, but in the proof of Theorem 1.15 we will find the minimizing µ for
infr IL,IB(a, s, r) and will characterize it using standard variational analysis. ♦

Remark 1.6 (Alternative rate function). Our proof of Theorem 1.1 in Sections 2.1 and 2.2 is
based on Sanov’s theorem and the contraction principle and leads to an entropy description of the
rate function. In Section 2.3 we give an alternate proof of Theorem 1.1 using Cramér’s theorem,
leading to a representation of the rate function involving Legendre transforms of logarithms of
moment-generating functions. This representation appears in (2.8). ♦

Now we turn to our LDP for the multi-channel case. Recall that Model (B) in [HLS12] is
contained in what we called Scenario (MC).

Theorem 1.7 (LDP for 1
N

(AN , SN) for Scenario (MC)). Fix the model parameters b, p > 0 and

κ ∈ N channels, where we assume p ≤ 1 for Rule D = G. Then the tuple 1
N

(AN , SN) satisfies

an LDP under P(N)

D,MC for D ∈ {L,G} with rate function (for D = L)

IL,MC(a, s) = inf
{
H(ν|M) : ν ∈M1(Ξ),

∑
(i,j)∈Ξ

ν(i, j)i = a,
∑

(i,j)∈Ξ

ν(i, j)j = s
}
, (1.6)

where Ξ = {(i, j) ∈ N2
0 : j ≤ i and j ≤ κ} and the reference probability measure M on Ξ is

given as

M(i, j) = Poi⊗κbp/κ

(∑
k∈[κ]

Xk = i,
∑
k∈[κ]

1l{Xk=1} = j
)
, (1.7)

and, for D = G, with rate function given as

IG,MC(a, s) = κ inf
{
H(µ|Poibp/κ) : µ ∈M1(N0),

∑
g∈N0

µ(g)g =
a

κ
, µ({1}) =

s

κ

}
+ a− bp+ (b− a) log

1− a
b

1− p
.

(1.8)

The proof is in Section 2.4 for Rule (L) and in Section 2.5 for Rule (G).



8 WOLFGANG KÖNIG AND CHARLES KWOFIE

Remark 1.8 (Interpretation). The reference measure M has the interpretation of a channel-
choice distribution. Indeed, the Poisson-distributed variables Xk, k ∈ [κ], with parameter bp
stand for the number of participants that choose the k-th channel for the transmission attempt;
then M(i, j) is the probability that in total i attempts are made and j successes are earned. ♦

Remark 1.9 (Contraction principle). The analogous assertions of Remark 1.2 about an LDP
for SN , e.g., hold certainly also for Scenario (MC). ♦

Remark 1.10 (Difference of the two rate functions). The difference of the two rate functions
in (1.8) is the same as in (1.2), but the reason is different from the reason in Scenario (IB)
(see Remark 1.4). It comes out by some explicit manipulation of the distribution of (AN , SN),
for which cannot offer an easy interpretation. ♦

Remark 1.11. Like for Scenario (IB), we could prove, with more technical work, the following
also in Scenario (MC). Fix a, s ∈ [0, b] satisfying s ≤ a and pick sequences aN , sN ∈ 1

N
N0 such

that aN → a and sN → s as N →∞. Then for D ∈ {L,G},

ID,MC(a, s) = − lim
N→∞

1

N
logP(N)

D,MC

(
AN = NaN , SN = NsN

)
(1.9)

1.4.2. Laws of large numbers. It is a standard conclusion from the LDP that, if the rate
function has a unique minimizer at (ap, sp, rp), a law of large numbers (LLN) follows, i.e.,
1
N

(AN , SN , RN)→ (ap, sp, rp) in probability with exponential decay of the probability of being
outside a neighbourhood of (ap, sp, rp). Hence, the following statement implies two LLNs.

Corollary 1.12 (LLN for the throughput in Scenario (IB)). The two rate func-
tions IG,IB and IL,IB are both strictly convex and possess the same unique minimizer
(aIB(p, κ), sIB(p, κ), rIB(p, κ)) given by

aIB(p, κ) = pb = EPoibp(X), (1.10)

sIB(p, κ) = e−bp
κ∑
i=0

i
(bp)i

i!
= EPoibp [X1l{X ≤ κ}] = bp e−bp

κ−1∑
i=0

(bp)i

i!
, (1.11)

rIB(p, κ) = e−bp
κ∑
i=0

(bp)i

i!
= Poibp([0, κ]). (1.12)

Proof. Just recall that the map µ 7→ H(µ|Poibp) is strictly convex and has the unique minimizer
µ = Poibp; hence the unique minimizing (a, s, r) must be compatible with that, i.e., equal to∑

k∈N0
f(k)Poibp(k). �

In particular, the throughput in Scenario (IB) is equal to the Poibp-expectation of X1l{X ≤
κ}, and the typical rate of successful micro time slots is Poibp([0, κ]).

In the same way, we see the analogous statement for (MC):

Corollary 1.13 (LLN for the throughput in Scenario (MC)). The two rate functions IG,MC

and IL,MC are both strictly convex and possess the same unique minimizer(
aMC(p, κ), sMC(p, κ)

)
=
(
pb, pbe−bp/κ

)
.

In particular, the throughput in Scenario (MC) is equal to bpe−bp/κ.



THROUGHPUT IN (SLOTTED) ALOHA 9

1.4.3. Optimal p. A natural and important question is about that value of p that maximizes
the expected throughput per micro slot, sIB(p, κ), respectively sMC(p, κ). Since p is restricted to
[0, 1] under Rule (G), we will consider only Rule (L), where we can optimize over all p ∈ (0,∞).

For Scenario (MC), the answer is easily derived by differentiating: the optimal p is equal to
κ/b, and the optimal throughput is equal to κ/e.

Scenario (IB) is more interesting. It is clear that the optimal value of p should be such that bp
is smaller than κ, since otherwise the number of attempts per time slot is larger than the success
threshold. But the question is how much below one should go in order not to underachieve
more than necessary.

Lemma 1.14 (Optimal p). For any κ ∈ N, there is precisely one p∗ ∈ (0,∞) that maximizes
the map (0,∞) 3 p 7→ sIB(p, κ). It is characterised by

(a∗)
κ

(κ− 1)!
=

∑
i∈N0 : i≤κ−1

(a∗)
i

i!
, a∗ = bp∗, (1.13)

and it satisfies bp∗ < κ − 1 and bp∗ ∼ κ as κ → ∞. More precisely, we even have bp∗ ≥
(κ −

√
κ)1−κ−1/2

for any κ. Furthermore, p 7→ sIB(p, κ) strictly increases in [0, p∗] and strictly
decreases in [p∗,∞).

The proof of Lemma 1.14 is in Section 3.1.

1.4.4. Conditioning the number of attempts on the number of successes. In this section we
discuss an interesting question in the interferenced-based scenario, where too many messages
lead to a serious descrease of throughput: what is the most likely reason for a deviation event
of the form that the throughput is below the theoretically optimal one? Have there been too
many message emission attempts, such that the interference canceled many, or did the system
underachieve, i.e., had fewer attempts than could be handled successfully?

This question can be answered with the help of large-deviation theory, combined with an
analysis of the rate functions. We handle this only for the Rule (L), where we can work
with any value of p ∈ (0,∞). In order to formalize this question, we write P(N,p)

L,IB = P(N,p) for
the probability measure in Scenario (IB) with parameter p and E(N,p) for the corresponding
expectation. Picking some 0 < s ≤ a, then it follows from Remark 1.3 that

lim
N→∞

1

N
logP(N,p)

(
AN = baNc

∣∣SN = bNsc
)

= − inf
r
I (p)

L,IB(a, s, r) + inf
ã,r
I (p)

L,IB(ã, s, r),

where we wrote I (p)

L,IB for the rate function IL,IB defined in (1.1). From this, we see that

lim
N→∞

E(N,p)

(AN
N

∣∣∣SN = bNsc
)

= argmin
a

(
inf
r
I (p)

L,IB(a, s, r)
)
.

(The latter can also be derived from Theorem 1.1 instead from the unproved Remark 1.3.)
Given s, we now define ap(s) as a minimizer of the map a 7→ infr I

(p)

L,IB(a, s, r), i.e., the typical
rate of sending attempts, conditional on having ≈ sN successes. It will turn out that ap(s) is
well-defined at least in a neighbourhood of ap(sp) if p is close enough to p∗ = p∗(L, IB), where
we now abbreviate sp = sL,IB(p, κ) for the minimizer that we established in Corollary 1.12, and
p∗ is the maximizing p for (0,∞) 3 p 7→ sp characterized by (1.13). In terms of these quantities,
the question now reads: Given s < sp , is it true that ap(s) < ap(sp)?
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Theorem 1.15. Fix κ. Then, for any p ∈ (0,∞) and for any s in some neighbourhood of sp,
we have

p < p∗ =⇒
[
s < sp ⇒ ap(s) < ap(sp)

]
and

[
s > sp ⇒ ap(s) > ap(sp)

]
, (1.14)

p > p∗ =⇒
[
s < sp ⇒ ap(s) > ap(sp)

]
and

[
s > sp ⇒ ap(s) < ap(sp)

]
. (1.15)

Furthermore, for p = p∗, for any s ∈ [0, p∗b] \ {sp∗}, we have ap∗(s) > ap∗(sp∗).

The proof is in Section 3.2. Theorem 1.15 says that, for non-optimal p, if s sufficiently close
to the optimal sp, then the attempt number ap(s) deviates to the same side of ap(sp) as s is
with respect to sp, while in the optimal p∗, the typical attempt number for non-optimal success
number is always larger than the optimal one. The latter means that, for the optimal choice
p = p∗, the event of non-optimal throughput alway comes with overwhelming probability from
too many attempts. Apparently, here the conditional probability for having too many attempts
is much larger than the one for having too few.

1.5. Literature remarks. A wide range of multiple access protocols have been extensively
discussed in the literature; see for example [RS90, BG92, LST19, SBBB09]. See [MBMH16,
Y91, TTH18, I11] for an explanation of the advantages and disadvantages of multi-channel
ALOHA protocols from a operational point of view and a description of transmit-reference
modulation (TR Modulation) for handling the problem of synchronizing simultaneous message
transmissions in such systems. [HLS12] gives some probabilistic analysis of a few concrete
ALOHA variants, but fails to give tractable formulas; Model (B) there is identical to our
Scenario (MC) under Rule (L). In [C20a, C20b], additional functionalities are investigated as
a possible improvement of the throughput by means of an additional exploration phase.

A systematic probabilistic analysis of the performance of ALOHA protocols has been started
for the single-channel pure ALOHA in the 1950s; see [A77, SW95] and some of the above
mentioned references. The throughput is identified there as λe−2λ, which also coincides with
our result for sALOHA(λ, 1) in the special case κ = 1. In [SW95], [LST19], [RS90] and [SBBB09]
one can also read about the more popular and better known single-channel version of ALOHA,
namely the slotted ALOHA, which offers the higher throughput λe−λ. The multi-channel case
of this model has also been studied, e.g., in [SL12], where the throughput λe−λ/κ has been
calculated. In the present paper, we re-derive this value and combine it with a large-deviation
analysis with explicit rate functions.

To the best of our knowledge, in continuous time there are no results for the multi-channel
model in the literature yet that are similar to those of the present paper, with the recent
exception [KS22], where the ALOHA and the Carrier Sense Multiple Access (CSMA) protocol
are analysed and similar results are derived as in the present paper for slotted ALOHA in
discrete time. The difference is that in the interference constraint is valid in any fixed time
interval, but not only in all the determined micro time slots. Hence, [KS22] does not find
a description in terms of independent random variables, but in terms of a Markov renewal
process.

2. Proofs of the LDPs
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2.1. Proof of Theorem 1.1 for Rule (L). In this section, we prove the LDP for Scenario
(IB) under Rule (L). Recall that we write [k] = {1, . . . , k} for k ∈ N.

For i ∈ [bN ] and j ∈ [N ], we let X (j)

i ∈ {0, 1} be the indicator on the event that the i-th
participant chooses to attempt to send a message in the j-th time slot. All these random
variables are independent Bernoulli random variables with parameter p/N . Let

A(j)

N =
∑
i∈[bN ]

1l{X (j)

i = 1}, R(j)

N = 1l{A(j)

N ≤ κ}, S(j)

N = A(j)

N 1l{A(j)

N ≤ κ}.

Then A(j)

N is the number of transmission attempts, R(j)

N the indicator on the event that the j-th
micro slot is successful and S(j)

N is the number of successfully sent messages during that time
slot. Clearly, A(j)

N is binomially distributed with parameters bN and p/N , and the collection

of them over j ∈ [N ] is independent. Furthermore, AN =
∑N

j=1A
(j)

N , RN =
∑N

j=1R
(j)

N and

SN =
∑N

j=1 S
(j)

N . We introduce the empirical measure

µN :=
1

N

N∑
j=1

δ
A

(j)
N
,

which is a random member of the setM1(N0) of probability measures on N0. Furthermore, we
introduce

f : N0 → N0 × [κ]× {0, 1}, f(a) =
(
a, a1l{a ≤ κ}, 1l{a ≤ κ}

)
.

Note that the triple under interest, (AN , RN , SN), is nothing but N〈f, µN〉, i.e., the image of
µN under the map µ 7→ 〈f, µ〉.

We abbreviate qk = Poibp(k) = e−pb(pb)k/k! and q = (qk)k∈N0 . If A(j)

N would be exactly
Poibp-distributed, then Sanov’s theorem would imply that (µN)N∈N satisfies an LDP with rate
function µ 7→ H(µ|Poibp). Let us assume for a moment that 〈f, µ̃N〉 satisfies an LDP with
rate function given in (1.1) if µ̃N is the empirical measure of independent Poibp-distributed
random variables A(1), . . . , A(N). We show that 〈f, µN〉 and 〈f, µ̃N〉 are exponentially equivalent
as N →∞ and therefore satisfy the same LDP, namely the LDP of Theorem 1.1 for D=L with
rate function given in (1.1). For this, it suffices to show that, for a suitable coupling of the
A(1), . . . , A(N) with the A(1)

N , . . . , A
(N)

N ,

lim
N→∞

1

N
logP

( N∑
j=1

|A(j)

N − A
(j)| > εN

)
= −∞, ε > 0, (2.1)

since the second and third components of f are smaller than the first one. We will show this
for any coupling of these variables such that limN→∞ P(A(1)

N 6= A(1)) = 0. We use Markov’s
inequality (or the exponential Chebyshev inequality) and the independence, to estimate, for
any C > 0,

P
( N∑
j=1

|A(j)

N − A
(j)| > εN

)
≤ e−CεNE

[
eC|A

(1)
N −A

(1)|
]N
.

We are finished as soon as we have shown that limN→∞ E[eC|A
(1)
N −A

(1)|] = 1 for any C > 0. In
the expectation, we estimate 1 ≤ 1l{A(1)

N ≤ K,A(1) ≤ K} + 1l{A(1)

N > K} + 1l{A(1) > K} and
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use once more the exponential Chebyshev inequality and then Hölder’s inequality to obtain,
for any L > 0,

E[eC|A
(1)
N −A

(1)|] ≤ 1 + e2CKP(A(1)

N 6= A(1))

+ e−LK
(√

E[e2(C+L)A
(1)
N ]E[e2CA(1) ] +

√
E[e2(C+L)A(1) ]E[e2CA

(1)
N ]
)

→ 1 + 2e−LKebp(e
2(C+L)−1)ebp(e

2C−1), N →∞,

as an explicit calculation for the exponential moments of A(1)

N and A(1) shows. We pick now
L = 1 and make K →∞ to see that the right-hand side converges to one, which concludes the
proof of (2.1).

It remains to show that 〈f, µ̃N〉 satisfies an LDP with rate function given in (1.1). Then
Sanov’s theorem implies that (µ̃N)N∈N satisfies an LDP on M1(N0) with rate function µ 7→
H(µ|Poibp). If the map µ 7→ 〈f, µ〉 would be continuous in the weak topology on M1(N0),
then the contraction principle immediately would give the assertion. However, clearly f is not
bounded, hence the map µ 7→ 〈f, µ〉 is not continuous in the weak topology onM1(N0). Hence
we cannot directly apply the contraction principle. Clearly, the second and third argument
in the function are bounded. A sufficient cutting argument for the first argument is given by
proving that

lim
C→∞

lim sup
N→∞

1

N
logPN

( N∑
j=1

A(j) > CN
)

= −∞. (2.2)

A proof of (2.2) is easily derived using the exponential Chebyshev inequality as above and that

A(1), . . . , A(N)

N are independent Poibp-distributed random variables and that E[eCA
(1)

] = epb(e
C−1)

for any C. Hence, modulo elementary technical details, the proof of Theorem 1.1 for Rule (L)
follows from this.

2.2. Proof of Theorem 1.1 under Rule (G). In this section, we prove the LDP for Scenario
(IB) under Rule (G).

We want to identify the large deviation behaviour of the probability distribution of the triple
(AN , SN , RN) under P(N)

G,IB. We have it already under P(N)

L,IB. We are going to identify the former
distribution now explicitly in terms of the latter.

For any a, s, r ∈ N0 we have the following;

dN = P(N)
G,IB

(
AN = a, SN = s, RN = r

)
= P(N)

G,IB(AN = a)P(N)

G,IB(SN = s, R = r|AN = a)

= P(N)

L,IB(AN = a)P(N)

L,IB(SN = s, RN = r|AN = a)
P(N)

G,IB(AN = a)

P(N)

L,IB(AN = a)
,

(2.3)

where we used that P(N)

G,IB(SN = s, RN = r|AN = a) = P(N)

L,IB(SN = s, RN = r|AN = a), since the
success rules are the same for the local and the global access rules. Hence

dN = P(N)

L,IB(AN = a, SN = s, RN = r)
P(N)

G,IB(AN = a)

P(N)

L,IB(AN = a)
. (2.4)

Hence, the two rate functions IL,IB and IG,IB differ only by the exponential rate of the quotient.
The latter is easily identified. Indeed, observe that AN is BinbN,p distributed under P(N)

G,IB, hence,
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if aN ∈ 1
N
N0 satisfies aN → a, then Stirling’s formula (N ! = (N/e)Neo(N) for N → ∞) shows

that

JG(a) := − lim
N→∞

1

N
logP(N)

G,IB

(
AN = NaN

)
= a log

a

p
+ (b− a) log

b− a
1− p

− b log b. (2.5)

Furthermore, under P(N)

L,IB, AN is distributed as the sum of N independent BinbN,p/N -distributed
random variables. We showed in Section 2.1 (see (2.1)) that AN is exponentially equivalent
with a sum of N independent Poibp-distritbuted random variables, hence AN satisfies an LDP
with the same rate function, more precisely,

JL(a) := − lim
N→∞

1

N
logP(N)

L,IB

(
AN = NaN

)
= pb− a+ a log

a

pb
. (2.6)

Hence, 1
N

(AN , SN , RN) under P(N)

G,IB satisfies an LDP with rate function

IG,IB(a, s, r) = IL,IB(a, s, r)− JG(a) + JL(a),

and this is equal to right hand side of (1.2).

2.3. Alternate proof of Theorem 1.1 under Rule (L). In this section, we indicate an
alternative proof of the LDP of Theorem 1.1 in Scenario (IB) under Rule (L) with an alternate
representation of the rate function that is very different from (1.1); see (2.8). Indeed, it does not
involve any entropy, but is instead based on formulas that appear in connection with Cramér’s
theorem, i.e., Legendre transforms of the logarithm of moment generating functions.

We use the notation of Section 2.1. Recall that A(j)

N is the number of emission attempts in
the j-th micro time slot, ( j−1

N
, j
N

]. Then A(1)

N , . . . , A
(N)

N are i.i.d., and each of them is BinbN,p/N -
distributed. Fix a, s, r ∈ N0 and consider the event {AN = a, SN = s, RN = r}. This is the
event that in precisely r time slots the corresponding A(j)

N is ≤ κ (these time slots are successful)
and in all the other N − r time slots it is > κ (these slots are unsuccessful), and that the total
sum of all the A(j)

N with A(j)

N is equal to s. By permutation symmetry of the time slots, we
may assume that all the first r time slots are successful and the remainning ones are not. The
total number of distinctions of the N slots into r successful and N − r unsuccessful ones is

(
N
r

)
.

Hence, by independence of the A(j)

N ’s and after relabeling, we have

P(N)

L,IB(AN = a, SN = s, RN = r)

=

(
N

r

)
P
(
A(j)

N ≤ κ ∀j ∈ [r],
∑
j∈[r]

A(j)

N = s
)

× P
(
A(j)

N > κ ∀j ∈ [N − r],
∑

j∈[N−r]

A(j)

N = a− s
)

=

(
N

r

)
BinbN,p/N([0, κ])r P(N)

≤κ

(1

r

∑
j∈[r]

A(j)

N =
s

r

)
× BinbN,p/N((κ,∞))N−r P(N)

>κ

( 1

N − r
∑

j∈[N−r]

A(j)

N =
a− s
N − r

)
,

(2.7)

where P
(N)

≤κ is the expectation with respect to independent BinbN,p/N -distributed variables, con-

ditioned on being ≤ κ, and P
(N)

>κ is defined analogously.
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Now the remainder of the proof is clear. We replace a, s, r ∈ N by aNN, sNN, rNN ∈ N
with aN → a, sN → s and rN → r for some a, s, r ∈ (0,∞) and we find easily the large-N
exponential asymptotics of the binomial term and the two probability powers, and for the two
probabilities involving the sums of A(j)

N ’s, we can use Cramér’s theorem. Here are some details:
We again use the Poisson limit theorem to see that BinbN,p/N([0, κ])rNN = Poipb([0, κ])rNeo(N)

as N → ∞ and the analogous statement for the other probability term. Furthermore, we
leave to the reader to check that the average of the A(j)

N under P
(N)

≤κ satisfy the same LDP as
the average of independent Poibp-distributed random variables, conditioned on being ≤ κ and
analogously with > κ instead of ≤ κ. (This is implied by a variant the exponential equivalence
that we proved in Section 2.1: see (2.1).) The latter do satisfy an LDP, according to Cramér’s
theorem, with rate function equal to the Legendre transform of y 7→ log E≤κ[e

yX1 ], where E≤κ
is the expectation with respect to P≤κ, and X1 is a corresponding random variable. Hence we
have that 1

rNN

∑
j∈[rNN ]A

(j)

N satisfies an LDP under P(N)

≤κ on the scale N with rate function

x 7→= rJ≤κ(x), where J≤κ(x) = sup
y∈R

(
xy − log E≤κ[e

yX1 ]
)
,

and an analogous assertion for the other probability term (last line of (2.7)). Note that Stirling’s
formula gives that − limN→∞

1
N

log
(
N
rNN

)
= r log r + (1− r) log(1− r). Substitution all this in

the last two lines of (2.7), we obtain that 1
N

(AN , SN , RN) satisfies under Rule (L) in Scenario
(IB) an LDP on the scale N with rate function equal to

ĨL,IB(a, s, r) = r log r + (1− r) log(1− r) + rJ≤κ(
s
r
)− r log Poibp([0, κ])

+ (1− r)J>κ(a−s1−r )− (1− r) log Poibp((κ,∞)).

This can be rewritten as follows. Introducing I≤κ(x) = supz∈R(xz − log
∑κ

i=0 ezi/i!), we see,
after making the substitution ez = bpey, i.e., y = z − log(pb), that

rJ≤κ(
s
r
)− r log Poibp([0, κ]) = rbp− s log(bp) + rI≤κ(

s
r
),

and an analogous formula for the last term, resulting in

ĨL,IB(a, s, r) = rI≤κ(
s
r
) + (1− r)I>κ(a−s1−r ) + bp− a log(bp) + r log r + (1− r) log(1− r). (2.8)

Certainly, this function must coincide with IL,IB defined in (1.1), but this is admittedly hard
to see.

2.4. Proof of Theorem 1.7 under Rule (L). We are now proving the LDP of Theorem 1.7
in Scenario (MC) under the Rule (L). We recall some of the notation from Section 2.1: for
i ∈ [bN ] and j ∈ [N ], we let X (j)

i ∈ {0, 1} be the indicator on the event that the i-th participant
chooses to attempt to send a message in the j-th time slot. All these random variables are
independent Bernoulli random variables with parameter p/N . Let A(j)

N =
∑

i∈[bN ] 1l{X (j)

i = 1},
then A(j)

N is the number of transmission attempts. Clearly, A(j)

N is binomially distributed with
parameters bN and p/N , and the collection of them over j ∈ [N ] is independent. Furthermore,

AN =
∑N

j=1 A
(j)

N .

Let us identify the distribution of the number S(j)

N of successes in the j-th slot given that
there are a = A(j)

N attempts. We observe that the vector of numbers (Z1, . . . , Zκ) of message
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transmission attempts Zk in the k-th channel is multinomially distributed with parameter
a =

∑
k∈[κ] Zk and κ. This means, for any α ∈ (0,∞), that

P(N)

L,MC

(
S(j)

N = s|A(j)

N = a
)

=
∑

z1,··· ,zκ∈N0 :
∑
k zk=a∑

k 1l{zk=1}=s

κ−a
(

a

(zk)k

)

=
a!

κα
α−aeακ

∑
z1,··· ,zκ∈N0 :

∑
k zk=a∑

k 1l{zk=1}=s

∏
j∈[κ]

(
αzk

zk!
e−α
)

=
1

Poiακ(a)
Poi⊗κα

(∑
k∈[κ]

Xk = a,
∑
k∈[κ]

1l{Xk=1} = s
)
,

(2.9)

where X1, . . . , Xκ are independent Poiα-distributed variables. We obtain for the joint distribu-
tion of A(j)

N and S(j)

N that

P(N)

L,MC

(
A(j)

N = a, S(j)

N = s) =
BinbN,p/N(a)

Poiακ(a)
Poi⊗κα

(∑
k∈[κ]

Xk = a,
∑
k∈[κ]

1l{Xk=1} = s
)
, (a, s) ∈ Ξ.

(2.10)
We now pick α = bp/κ and observe that the quotient on the right-hand side then converges
towards one as N → ∞, according to the Poisson limit theorem. Furthermore, the last term
was introduced in (1.7) under the name M(a, s). Hence, the pair (AN , SN) is equal to the sum
of N independent copies of a pair with distribution MN that converges pointwise towards M as
N → ∞. Analogously to the corresponding part in Section 2.1 (see around (2.1)), one shows

that 1
N

(ÃN , S̃N) and 1
N

(AN , SN) are exponentially equivalent, where the former is 1
N

times a
sum of N independent random vectors (A(1), S(1)), . . . , (A(N), S(N)) with distribution M each.
Hence both satisfy the same LDP, if any of them satisfies some.

Indeed, 1
N

(ÃN , S̃N) does satisfy the LDP of Theorem 1.7 under Rule (L), as is seen in the

same way as in Section 2.1. One uses that the empirical measure µ̃N = 1
N

∑N
j=1 δ(A(j),S(j))

satisfies an LDP with rate function µ 7→ H(µ|M) and that 1
N

(ÃN , S̃N) =
∑

(i,j)∈Ξ µ̃N(i, j)(i, j)

is a function of µ̃N that is, after applying some cutting procedure, continuous. Then the

contraction principle implies that 1
N

(ÃN , S̃N) satisfies the LDP of Theorem 1.7 under Rule (L).

2.5. Proof of Theorem 1.7 under Rule (G). In this section, we prove the LDP for
1
N

(An, SN) in Scenario (MC) under Rule (G). We are able to use the identification of their
distribution from Section 2.4 here for a different choice of parameters. Indeed, recall that AN
is BinbN,p-distributed. Given that AN = a attempts are made during the entire time interval
[0, 1], each of the a attempts makes a random and uniform choice among N time slots and κ
channels altogether. Furthermore, in each channel in each slot, the success criterion is that no
more than one choice is made here. This means that the distribution of SN given {AN = a}
is the same as in (2.9) with κN instead of κ. Again, we choose α = bp/κ. Hence, for any
(a, s) ∈ Ξ,

P(N)

G,IB

(
AN = a, SN = s

)
=

BinbN,p(a)

PoibpN(a)
Poi⊗κNbp/κ

( κN∑
i=1

Xi = a,
κN∑
i=1

1l{Xi=1} = s
)
. (2.11)
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We use this now for (a, s) replaced by (aNN, sNN) ∈ N2 with aN → a and sN → s for some
(a, s) ∈ Ξ and see that the quotient on the right-hand side behaves like

lim
N→∞

1

N
log

BinbN,p(aNN)

PoibpN(aNN)
= lim

N→∞

1

N
log

(bN/e)bNpaN(1− p)(b−a)N(aN)!ebpN

(aN)!((b− a)N/e)(b−a)N(bpN)aN

= −
[
a− bp+ (b− a) log

1− a
b

1− p

]
,

using also Stirling’s formula.

The second term on the right-hand side of (2.11) is the dsitribution of the sum of
(Xi, 1l{Xi=1}) of κN independent, Poibp/κ-distributed random variables X1, . . . , XκN . This is
a two-dimensional functional of their empirical measure µκN , and the latter satisfies an LDP
with speed κN with rate function equal to µ 7→ H(µ|Poibp/κ). This functional is not a contin-
uous one, since the identity map is not bounded, but in Section 2.1 (see (2.2)) we saw how to

perform a suitable cutting argument. Hence, we know that the pair 1
κN

∑κN
i=1(Xi, 1l{Xi=1}) =

(〈µκN , id〉, 〈µκN , δ{1}〉) satisfies, according to the contraction principle, an LDP with speed N
with rate function

µ 7→ κ inf
{
H(µ|Poibp/κ) : µ ∈M1(N0),

∑
g∈N0

µ(g)g =
a

κ
, µ({1}) =

s

κ

}
.

(The prefactor κ comes from the change of scales from κN to N in the LDP, and the κ in

the two denominators comes from the normalization of
∑κN

i=1 by κN instead of N .) Hence
summarizing everything together ends the proof of Theorem 1.7 under Rule (G).

3. Optimizing and conditioning

In this section we prove Lemma 1.14 and Theorem 1.15.

3.1. Optimizing p 7→ sp. In this section, we prove Lemma 1.14, that is, we analyse the
maximizer of the map (0,∞) 3 p 7→ sIB(p, κ), the optimal throughput for Scenario (IB) under
Rule (L). We abbreviate sp = sIB(p, κ).

The analytic function g(a) = sa/b = ae−a
∑κ−1

i=0
ai

i!
is positive in (0,∞) with limits 0 at a ↓ 0

and a → ∞, hence it has at least one maximizer a∗, which is characterised by g′(a∗) = 0. We

see that (with f≤(a) =
∑κ

i=0
ai

i!
)

d

dp
sp = b e−ap

(
f ′≤(ap)+apf

′′
≤(ap)−apf ′≤(ap)

)
= be−bp

[ ∑
i≤κ−1

(bp)i

i!
− (bp)κ

(κ− 1)!

]
, p > 0. (3.1)

Hence, (1.13) characterizes the minimizer(s) p∗, but at this stage we do not yet know how many
minimizers exist.

Using elementary calculus, we see that a solution a∗ to (1.13) exists since the polynomial

f(a) = −(κ− 1)!be−a d
dp
sp = aκ −

∑
i≤κ−1 a

i (κ−1)!
i!

starts with f(0) < 0 and satisfies f(a)→∞
as a→∞. Note that, for any a > 0, we have

f(a) ≥ aκ −
∑
i≤κ−1

ai(κ− 1)κ−1−i = aκ − (κ− 1)κ−1
∑
i≤κ−1

( a

κ− 1

)i
= aκ +

(κ− 1)κ − aκ

a− (κ− 1)

=
aκ(a− κ) + (κ− 1)κ

a− (κ− 1)
,
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and the latter is positive for any a > κ−1. Hence, we even have that a∗ ≤ κ−1. Furthermore,

there is only one solution, since f ′(a) = κaκ−1 −
∑

i≤κ−1 a
i (κ−1)!

i!
+ aκ−1 for any a, and for any

solution a∗ we see that f ′(a∗) = (κ+ 1)aκ−1
∗ − aκ∗ = aκ−1

∗ [κ+ 1− a∗], which is positive. Hence,
f has precisely one zero in [0,∞). It is negative left of a∗ and positive right of it. Accordingly,
p 7→ sp is increasing in [0, p∗] and decreasing in [p∗,∞). We obtain a lower bound for a∗ by

f(a) ≤ aκ − ai (κ− 1)!

i!
< ai

(
aκ−i − (i+ 1)κ−i−1

)
, a > 0, i ∈ {0, . . . , κ− 1}.

This upper bound is zero for a = (i + 1)1−1/(κ−i), hence a∗ ≥ maxκ−1
i=0 (i + 1)1−1/(κ−i). Taking

i = κ −
√
κ gives a∗ ≥ (κ −

√
κ)1−κ−1/2

= κ(1 + o(1)) as κ → ∞. This finishes the proof of
Lemma 1.14.

3.2. Conditioning on successes. In this section, we prove Theorem 1.15. Recall that we
conceive the maximal throughput per micro slot, s = sp, as a function of p. Recall from
Lemma 1.14 that the maximal p∗ for p 7→ sp is characterized by

aκp
(κ− 1)!

=
κ−1∑
i=0

aip
i!
, ap = bp. (3.2)

Furthermore recall that ap(s) denotes the minimising a for the map a 7→ infr I
(p)

L,IB(a, s, r), and
note that ap = ap(sp) = bp. Here we answer the question of the reason for few number of
successes. The following lemma implies Theorem 1.15.

Lemma 3.1. For any p ∈ (0,∞), we have a′p(sp) < 0 for p < p∗ and a′p(sp) > 0 for p > p∗. In
particular, for s in a neighbourhood of sp, (1.14) and (1.15) hold.

Furthermore, for p = p∗, we have ap∗(s) > ap∗(sp∗) = bp∗ for any s ∈ [0, b] \ {bp∗}.

Proof. Let us first analyse infr I
(p)

L,IB(a, s, r) for fixed a, s ∈ (0,∞) satisfying a > s. We benefit
from the representation in (1.2): We have that

inf
r
I (p)

L,IB(a, s, r) = inf
r

inf{H(µ|Poipb) : 〈f, µ〉 = (a, s, r)}

= inf
{
H(µ|Poipb) :

∞∑
k=0

kµk = a,
κ∑
k=0

kµk = s
}

= inf
{
H(µ|Poipb) : 〈µ, id〉 = a, 〈µ, id|≤κ〉 = s

}
,

where id is the identity function on N0 and id|≤κ(k) = k1l[0,κ](k); and we used the notation
〈µ, f〉 for the integral of a function f with respect to a measure µ. Now we apply standard
variational calculus. Consider a minimizer µ of the last formula. A standard argument shows
that µk > 0 for any k. Fix some compactly supported γ : N0 → R satisfying γ⊥1l, γ⊥id and
γ⊥id|≤κ. Then, for any ε ∈ R with sufficiently small |ε|, the measure µ + εγ is admissible.
From minimality, we deduce that

0 = ∂ε|ε=0H(µ+ εγ|Poipb) =
∑
k

(
γk log

µk
qk

+ µk
γk
µk

)
=
〈
γ, log

µ

q

〉
,
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where we put qk = Poipb(k). Hence, log µ
q

is a linear combination of 1l, id and id|≤κ. That is,

there are A,B,C ∈ R such that

µk = qke
AeBk ×

{
eCk for k ≤ κ,

1 for k > κ,
k ∈ N0. (3.3)

We note that A,B and C are well-defined functions of a and s, since 1l, id and id|≤κ are linearly
independent.

Now using that 〈µ, 1l〉 = 1 and 〈µ, id〉 = a and 〈µ, id|≤κ〉 = s, and introducing the notation

ϕ(B,C) := log
( κ∑
k=0

qke
(B+C)k +

∑
k>κ

qke
Bk
)
, B, C ∈ R, (3.4)

we see that B = B(a, s) and C = C(a, s) are characterised by

a =

∑
k≤κ

kqke
(B+C)k +

∑
k>κ

kqke
Bk∑

k≤κ
qke(B+C)k +

∑
k>κ

qkeBk
= ∂Bϕ(B,C), (3.5)

s =

∑
k≤κ

kqke
(B+C)k∑

k≤κ
qke(B+C)k +

∑
k>κ

qkeBk
= ∂Cϕ(B,C), (3.6)

while A(a, s) = −ϕ(B(a, s), C(a, s)). Furthermore,

inf
r
I (p)

L,IB(a, s, r) =
∑
k

µk log
µk
qk

= Ba+ Cs− ϕ(B,C). (3.7)

This finishes the characterisation of infr I
(p)

L,IB(a, s, r) for any fixed a, s.

Now we optimise over a with s fixed. We recall that ap(s) denotes the minimizing a of
infr I

(p)

L,IB(a, s, r). Recalling that B and C are functions of a and s, we differentiate (3.7) with
respect to a and use it for a = ap(s) to obtain

0 =
(
ap(s)− ∂Bϕ(B(ap(s), s), C(ap(s), s))

) d

ds
B(ap(s), s)

+
(
s− ∂Cϕ(B(ap(s), s), C(ap(s), s))

) d

ds
C(ap(s), s) +B(ap(s), s)

= B(ap(s), s),

(3.8)

also using (3.5) and (3.6). Differentiating this with respect to s produces

a′p(s) = −∂sB(ap(s), s)

∂aB(ap(s), s)
. (3.9)

A tedious calculation, starting from differentiating both (3.5) and (3.6) both with respect to a
and to s, gives, for B = B(a, s) and any a and s,

∂aB =
∂2
Cϕ

∂2
Bϕ∂

2
Cϕ− (∂C∂Bϕ)2

and ∂sB = − ∂B∂Cϕ

∂2
Bϕ∂

2
Cϕ− (∂C∂Bϕ)2

and hence

a′p(s) =
∂B∂Cϕ(B,C)

∂2
Cϕ(B,C)

with B = B(ap(s), s) = 0 and C = C(ap(s), s). (3.10)
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First we show that the denominator is positive:

∂2
Cϕ(B,C) =

∑
k≤κ

k2qke
(B+C)k

(∑
k≤κ

qke
(B+C)k +

∑
k>κ

qke
Bk
)
−
(∑
k≤κ

kqke
(B+C)k

)2

(∑
k≤κ

qke(B+C)k +
∑
k>κ

qkeBk
)2

≥

(∑
k≤κ

k2qke
(B+C)k

)(∑
k≤κ

qke
(B+C)k

)
−
(∑
k≤κ

kqke
(B+C)k

)2

(∑
k≤κ

qke(B+C)k +
∑
k>κ

qkeBk
)2 > 0, B, C ∈ R,

as a standard symmetrisation shows. Next we consider the numerator in (3.10):

∂B∂Cϕ(0, C) =
(∑
k≤κ

qke
Ck +

∑
k>κ

qk

)−2

[∑
k≤κ

k2qke
Ck
(∑
k≤κ

qke
Ck +

∑
k>κ

qk

)
−
(∑
k≤κ

kqke
Ck +

∑
k>κ

kqk

)∑
k≤κ

kqke
Ck
]
.

(3.11)
No we use the facts that

∑
k≤κ qk +

∑
k>κ qk = 1 (since (qk)k∈N0 is a probability distribution)

and
∑

k∈N0
kqk = bp = ap = ap(sp) (see Corollary 1.12; (qk)k∈N0 = Poipb has expectation pb).

Furthermore, note that C(ap(sp), sp) = 0 by optimality (which can be seen in the same way as
the fact that B(ap(s), s) = 0 above). Then we get

a′p(sp) = ∂B∂Cϕ(0, 0) =
∑
k≤κ

k2qk − bp
∑
k≤κ

kqk

= bpe−bp
[ ∑
k≤κ−1

(k + 1)
(bp)k

k!
− bp

∑
k≤κ−1

(bp)k

k!

]
= p

d

dp
sp,

as we see from (3.1). Recall that p∗ is the unique maximizer for p 7→ sp. According to Lemma
1.14, this (and therefore a′p(sp)) is positive if p < p∗ and negative if p > p∗. This implies all
assertions of Lemma 3.1 for p 6= p∗.

Now we consider the case p = p∗ characterised in (3.2). Here it will not be successful to rely
on the characterisation of ap(s) by 0 = B(ap(s), s) and to consider the derivative with respect
to s in s = sp∗ only, since ∂B∂Cϕ(0, 0) = 0 for p = p∗. Instead, we use (3.5) and explicitly look
at the difference

ap∗(s)− ap∗(sp∗) = ∂Bϕ(0, C)− bp∗ =

∑
k≤κ qke

Ck[k − ap∗ ] +
∑

k>κ qk[k − ap∗ ]∑
k≤κ qke

Ck +
∑

k>κ qk

=

∑
k≤κ qk[e

Ck − 1][k − ap∗ ]∑
k≤κ qke

Ck +
∑

k>κ qk
,

(3.12)

with C = C(ap∗(s), s). We used in the last step that
∑

k>κ kqk = ap∗−
∑

k≤κ kqk and
∑

k∈N0
qk =

1. Note that C < 0 for s < sp∗ and C > 0 for s > sp∗ . Indeed, a similar calculation as in (3.8)
shows that

d

ds
inf
r,a
I (p∗)

L,IB(a, s, r) =
d

ds

[
sC(ap∗(s), s)− ϕ

(
0, C(ap∗(s), s)

)]
= C(ap∗(s), s), s ∈ (0,∞).

Now note that sp∗ is defined as the minimizer of the function s 7→ infr,a I
(p∗)
L,IB(a, s, r); hence it

is decreasing left of the minimal point and increasing right of it.



20 WOLFGANG KÖNIG AND CHARLES KWOFIE

Write g(C) =
∑κ

k=0 qk[e
Ck − 1][k − ap∗ ] for the numerator of the right-hand side of (3.12).

Clearly g(0) = 0. Recall that ∂B∂Cϕ(0, 0) = 0 hence the derivative of 3.12 with respect to C is
0. Clearly the derivative of (3.12) is 0 only if g′(0) = 0. Hence observe that, for any C < 0,

g′(C) =
κ∑
k=0

kqke
Ck(k − ap∗) < eCap∗

∑
k≤ap∗

kqk(k − ap∗) + eCap∗
∑

k : ap∗<k≤κ

kqk(k − ap∗) = 0.

Hence, g is strictly decreasing in (−∞, 0] and hence positive in (−∞, 0). An analogous argument
shows that g′(C) > 0 for C > 0:

g′(C) =
κ∑
k=0

kqke
Ck(k − ap∗) >

∑
k≤ap∗

kqk(k − ap∗) +
∑

k : ap∗<k≤κ

kqk(k − ap∗) = 0.

Hence g is strictly increasing and positive in (0,∞). This implies that ap∗(s) > ap∗(sp∗) for any
s 6= sp∗ and finishes the proof of the lemma. �

Acknowledgment. The support of the Deutsche Akademische Auslandsdienst (DAAD) via
the Project Berlin-AIMS Network in Stochastic Analysis (Project-ID 57417853) is gratefully
acknowledged.

References

[A77] N. Abramson. The ALOHA system: another alternative for computer communications, Fall Joint

Computer Conference 37 (Jan. 1977), p. 281-285.

[BG92] D. Bertsekas and R. Gallager. Data networks, Englewood Cliffs, New Jersey: Prentice-Hall

(1992).

[C20a] J. Choi, Multichannel ALOHA with exploration phase, WCNC 2020: Proceedings of the 2020 IEEE

Wireless Communications and Networking Conference, Seoul, South Korea, E1, Vol. 2020-May, pp.

1-6, (2020).

[C20b] J. Choi, On Improving Throughput of Multichannel ALOHA using Preamble-based Exploration,

Journal of Communications and Networks 22:5 (October 2020).

[CL12] K. Cohen, and A. Leshem. Distributed throughput maximization for multi-channel ALOHA net-

works, In: 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor

Adaptive Processing (CAMSAP), IEEE 456-459, 2013.

[DZ10] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, eng. 2. ed., corr.

printing of the 1998 ed. Springer New York, NY (2010).

[HLS12] F.T. Hsu, C.T. Liu, and H.J. Su. Exploiting channel state information in slotted ALOHA with

SINR capture, In: 2012 IEEE Wireless Communications and Networking Conference (WCNC),

1675-1679, IEEE, 2012.

[I11] O.D. Incel. A survey on multi-channel communication in wireless sensor networks, Computer Net-

works 55(13), 3081-3099, 2011.

[KS22] W. König and H. Shafigh, Multi-channel ALOHA and CSMA medium-access

protocols: Markovian description and large deviations, preprint, arXiv:2212.08588,

https://arxiv.org/abs/2212.08588, 2022.

[LST19] L. Lakatos, L. Szeidl and M. Telek, Introduction to Queueing Systems with Telecommunication

Applications, 2nd ed., Springer New York, NY (2019).



THROUGHPUT IN (SLOTTED) ALOHA 21

[MBMH16] S. Morshed, M. Baratchi, P.K. Mandal, and G. Heijenk. A multi-channel multiple access

scheme using frequency offsets—Modelling and analysis, In: 2016 IEEE 12th International Con-

ference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 1-7),

IEEE, 2016.

[RS90] R. Rom and M. Sidi, Multiple Access Protocols: Performance and Analysis, Telecommunication

networks and computer systems, Springer New York, NY (1990).

[SBBB09] S. Salmi, M.L. Boucenna, M. Barkat and M. Benslama, Throughput Evaluation in ALOHA

Technique and its Derivatives Erasure Coding in Satellite Network Commmunications, Jan. 2009.

[SL12] D. Shen and V. Li, Stabilized multi-channel ALOHA for wireless OFDM networks, In: IEEE (2012).

[SW95] A. Shwartz and A. Weiss, Large Deviations for Performance Analysis: Queues, Communications,

and Computing, Stochastic modeling series, London u.a.: Chapman und Hall (1995).

[TTH18] K. Taneja, H. Taneja, and R. Kumar. Multi-channel medium access control protocols: review

and comparison, Journal of Information and Optimization Science 39(1), 239-247, 2018.

[Y91] W. Yue. The effect of capture on performance of multichannel slotted ALOHA systems. IEEE

Transactions on Communications, 39(6), 1991.


	1. Introduction and main results
	1.1. Introduction
	1.2. Description of the models
	1.3. Quantities and questions of interest
	1.4. Our results
	1.5. Literature remarks

	2. Proofs of the LDPs
	2.1. Proof of Theorem 1.1 for Rule (L)
	2.2. Proof of Theorem 1.1 under Rule (G)
	2.3. Alternate proof of Theorem 1.1 under Rule (L)
	2.4. Proof of Theorem 1.7 under Rule (L)
	2.5. Proof of Theorem 1.7 under Rule (G)

	3. Optimizing and conditioning
	3.1. Optimizing psp
	3.2. Conditioning on successes

	References

